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arithasianmc Asian Monte Carlo option pricing

Description

Monte Carlo pricing calculations for European Asian options. arithasianmc and geomasianmc
compute Monte Carlo prices for the full range of average price and average strike call and puts
computes prices of a complete assortment of Arithmetic Asian options (average price call and put
and average strike call and put)

Arithmetic average Asian option prices

Usage

arithasianmc(s, k, v, r, tt, d, m, numsim=1000, printsds=FALSE)

Arguments

s Price of underlying asset

k Strike price of the option. In the case of average strike options, k/s is the mul-
tiplier for the average

v Volatility of the underlygin asset price, defined as the annualized standard devi-
ation of the continuously-compounded return

r Annual continuously-compounded risk-free interest rate

tt Time to maturity in years

d Dividend yield, annualized, continuously-compounded

m Number of prices in the average calculation

numsim Number of Monte Carlo iterations

printsds Print standard deviation for the particular Monte Carlo calculation

Value

Array of arithmetic average option prices, along with vanilla European option prices implied by the
the simulation. Optionally returns Monte Carlo standard deviations.
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See Also

Other Asian: arithavgpricecv(), asiangeomavg, geomasianmc()

Examples

s=40; k=40; v=0.30; r=0.08; tt=0.25; d=0; m=3; numsim=1e04
arithasianmc(s, k, v, r, tt, d, m, numsim, printsds=TRUE)

arithavgpricecv Control variate asian call price

Description

Calculation of arithmetic-average Asian call price using control variate Monte Carlo valuation

Usage

arithavgpricecv(s, k, v, r, tt, d, m, numsim)

Arguments

s Price of underlying asset

k Strike price of the option. In the case of average strike options, k/s is the mul-
tiplier for the average

v Volatility of the underlygin asset price, defined as the annualized standard devi-
ation of the continuously-compounded return

r Annual continuously-compounded risk-free interest rate

tt Time to maturity in years

d Dividend yield, annualized, continuously-compounded

m Number of prices in the average calculation

numsim Number of Monte Carlo iterations

Value

Vector of the price of an arithmetic-average Asian call, computed using a control variate Monte
Carlo calculation, along with the regression beta used for adjusting the price.

See Also

Other Asian: arithasianmc(), asiangeomavg, geomasianmc()

Examples

s=40; k=40; v=0.30; r=0.08; tt=0.25; d=0; m=3; numsim=1e04
arithavgpricecv(s, k, v, r, tt, d, m, numsim)
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asiangeomavg Geometric average asian options

Description

Pricing functions for European Asian options based on geometric averages. geomavgpricecall,
geomavgpriceput, geomavgstrikecall and geomavgstrikeput compute analytical prices of ge-
ometric Asian options using the modified Black-Scholes formula.

Usage

geomavgprice(s, k, v, r, tt, d, m, cont=FALSE)
geomavgpricecall(s, k, v, r, tt, d, m, cont=FALSE)
geomavgpriceput(s, k, v, r, tt, d, m, cont=FALSE)
geomavgstrike(s, km, v, r, tt, d, m, cont=FALSE)
geomavgstrikecall(s, km, v, r, tt, d, m, cont=FALSE)
geomavgstrikeput(s, km, v, r, tt, d, m, cont=FALSE)

Arguments

s Price of underlying asset

k Strike price of the option. In the case of average strike options, k/s is the mul-
tiplier for the average

v Volatility of the underlygin asset price, defined as the annualized standard devi-
ation of the continuously-compounded return

r Annual continuously-compounded risk-free interest rate

tt Time to maturity in years

d Dividend yield, annualized, continuously-compounded

m Number of prices in the average calculation

cont Boolean which when TRUE denotes continuous averaging

km The strike mutiplier, relative to the initial stock price, for an average price pay-
off. If the initial stock price is s = 120 and km = 115, the payoff for an average
strike call is

Payoff = max(ST − km/s ∗ SAvg, 0)

.

Value

Option prices as a vector

See Also

Other Asian: arithasianmc(), arithavgpricecv(), geomasianmc()
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Examples

s=40; k=40; v=0.30; r=0.08; tt=0.25; d=0; m=3;
geomavgpricecall(s, k, v, r, tt, d, m)
geomavgpricecall(s, 38:42, v, r, tt, d, m)
geomavgpricecall(s, 38:42, v, r, tt, d, m, cont=TRUE)

barriers Barrier option pricing

Description

This library provides a set of barrier binary options that are used to construct prices of barrier
options. The nomenclature is that

• "call" and "put" refer to claims that are exercised when the asset price is above or below the
strike;

• "up" and "down" refer to claims for which the barrier is above or below the current asset price;
and

• "in" and "out" refer to claims that knock in or out

For example, for standard barrier options, calldownin refers to a knock-in call for which the barrier
is below the current price, while putdownout refers to a knock-out put for which the barrier is below
the current asset price.

For binary barrier options, "ui", "di" "uo", and "do" refer to up-and-in, down-and-in, up-and-out,
and down-and-out options.

Rebate options pay \$1 if a barrier is reached. The barrier can be reached from above ("d") or
below ("d"), and the payment can occur immediately ("ur" or "dr") or at expiration ("drdeferred"
and "urdeferred")

callupin(s, k, v, r, tt, d, H) = assetuicall(s, k, v, r, tt, d, H) - k*cashuicall(s, k, v,
r, tt, d, H)

Usage

callupin(s, k, v, r, tt, d, H)
callupout(s, k, v, r, tt, d, H)
putupin(s, k, v, r, tt, d, H)
putupout(s, k, v, r, tt, d, H)
calldownin(s, k, v, r, tt, d, H)
calldownout(s, k, v, r, tt, d, H)
putdownin(s, k, v, r, tt, d, H)
putdownout(s, k, v, r, tt, d, H)
uicall(s, k, v, r, tt, d, H) ## same as callupin
uocall(s, k, v, r, tt, d, H) ## same as callupout
uiput(s, k, v, r, tt, d, H) ## same as putupin
uoput(s, k, v, r, tt, d, H) ## same as putupout
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dicall(s, k, v, r, tt, d, H) ## same as calldownin
docall(s, k, v, r, tt, d, H) ## same as calldownout
diput(s, k, v, r, tt, d, H) ## same as putdownin
doput(s, k, v, r, tt, d, H) ## same as putdownout
cashuicall(s, k, v, r, tt, d, H)
cashuiput(s, k, v, r, tt, d, H)
cashdicall(s, k, v, r, tt, d, H)
cashdiput(s, k, v, r, tt, d, H)
assetuicall(s, k, v, r, tt, d, H)
assetuiput(s, k, v, r, tt, d, H)
assetdicall(s, k, v, r, tt, d, H)
assetdiput(s, k, v, r, tt, d, H)
cashuocall(s, k, v, r, tt, d, H)
cashuoput(s, k, v, r, tt, d, H)
cashdocall(s, k, v, r, tt, d, H)
cashdoput(s, k, v, r, tt, d, H)
assetuocall(s, k, v, r, tt, d, H)
assetuoput(s, k, v, r, tt, d, H)
assetdocall(s, k, v, r, tt, d, H)
assetdoput(s, k, v, r, tt, d, H)
dr(s, v, r, tt, d, H, perpetual)
ur(s, v, r, tt, d, H, perpetual)
drdeferred(s, v, r, tt, d, H)
urdeferred(s, v, r, tt, d, H)

Arguments

s Stock price

k Strike price of the option

v Volatility of the stock, defined as the annualized standard deviation of the continuously-
compounded return

r Annual continuously-compounded risk-free interest rate

tt Time to maturity in years

d Dividend yield, annualized, continuously-compounded

H Barrier

perpetual Boolean for the case where an up or down rebate is infinitely lived. Default is
FALSE.

Details

Returns a scalar or vector of option prices, depending on the inputs

Value

The pricing functions return the price of a barrier claim. If more than one argument is a vector, the
recycling rule determines the handling of the inputs.
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Examples

s=40; k=40; v=0.30; r=0.08; tt=0.25; d=0; H=44
callupin(s, k, v, r, tt, d, H)

## following returns the same price as previous
assetuicall(s, k, v, r, tt, d, H) - k*cashuicall(s, k, v, r, tt, d, H)

## return option prices for different strikes putupin(s, k=38:42,
#v, r, tt, d, H)

binom Binomial option pricing

Description

binomopt using the binomial pricing algorithm to compute prices of European and American calls
and puts.

Usage

binomopt(s, k, v, r, tt, d, nstep = 10, american = TRUE,
putopt=FALSE, specifyupdn=FALSE, crr=FALSE, jarrowrudd=FALSE,
up=1.5, dn=0.5, returntrees=FALSE, returnparams=FALSE,
returngreeks=FALSE)

binomplot(s, k, v, r, tt, d, nstep, putopt=FALSE, american=TRUE,
plotvalues=FALSE, plotarrows=FALSE, drawstrike=TRUE,
pointsize=4, ylimval=c(0,0),
saveplot = FALSE, saveplotfn='binomialplot.pdf',
crr=FALSE, jarrowrudd=FALSE, titles=TRUE, specifyupdn=FALSE,
up=1.5, dn=0.5, returnprice=FALSE, logy=FALSE)

Arguments

s Stock price

k Strike price of the option

v Volatility of the stock, defined as the annualized standard deviation of the continuously-
compounded return

r Annual continuously-compounded risk-free interest rate

tt Time to maturity in years

d Dividend yield, annualized, continuously-compounded

nstep Number of binomial steps. Default is nstep = 10

american Boolean indicating if option is American

putopt Boolean TRUE is the option is a put
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specifyupdn Boolean, if TRUE, manual entry of the binomial parameters up and down. This
overrides the crr and jarrowrudd flags

crr TRUE to use the Cox-Ross-Rubinstein tree

jarrowrudd TRUE to use the Jarrow-Rudd tree

up, dn If specifyupdn=TRUE, up and down moves on the binomial tree

returntrees If returntrees=TRUE, the list returned by the function includes four trees: for
the price of the underlying asset (stree), the option price (oppricetree), where the
option is exercised (exertree), and the probability of being at each node. This
parameter has no effect if returnparams=FALSE, which is the default.

returnparams Return the vector of inputs and computed pricing parameters as well as the price

returngreeks Return time 0 delta, gamma, and theta in the vector greeks

plotvalues display asset prices at nodes

plotarrows draw arrows connecting pricing nodes

drawstrike draw horizontal line at the strike price

pointsize CEX parameter for nodes

ylimval c(low, high) for ylimit of the plot

saveplot boolean; save the plot to a pdf file named saveplotfn

saveplotfn file name for saved plot

titles automatically supply appropriate main title and x- and y-axis labels

returnprice if TRUE, the binomplot function returns the option price

logy (FALSE). If TRUE, y-axis is plotted on a log scale

Details

By default, binomopt returns an option price. Optionally, it returns a vector of the parameters used
to compute the price, and if returntrees=TRUE it can also return the following matrices, all but but
two of which have dimensionality (nstep + 1)× (nstep + 1):

stree the binomial tree for the price of the underlying asset.

oppricetree the binomial tree for the option price at each node

exertree the tree of boolean indicators for whether or not the option is exercisd at each node

probtree the probability of reaching each node

delta at each node prior to expiration, the number of units of the underlying asset in the replicating
portfolio. The dimensionality is (nstep)× (nstep)

bond at each node prior to expiration, the bond position in the replicating portfolio. The dimen-
sionality is (nstep)× (nstep)

binomplot plots the stock price lattice and shows graphically the probability of being at each node
(represented as the area of the circle at that price) and whether or not the option is optimally exer-
cised there (green if yes, red if no), and optionally, ht, depending on the inputs.
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Value

By default, binomopt returns the option price. If returnparams=TRUE, it returns a list where
$price is the binomial option price and $params is a vector containing the inputs and bino-
mial parameters used to compute the option price. Optionally, by specifying returntrees=TRUE,
the list can include the complete asset price and option price trees, along with trees represent-
ing the replicating portfolio over time. The current delta, gamma, and theta are also returned. If
returntrees=FALSE and returngreeks=TRUE, only the current price, delta, gamma, and theta are
returned. The function binomplot produces a visual representation of the binomial tree.

Note

By default, binomopt computes the binomial tree using up and down moves of

u = exp((r − d) ∗ h+ σ
√
h)

and
d = exp((r − d) ∗ h− σ

√
h)

You can use different trees: There is a boolean variable CRR to use the Cox-Ross-Rubinstein pricing
tree, and you can also supply your own up and down moves with specifyupdn=TRUE. It’s important
to realize that if you do specify the up and down moves, you are overriding the volatility parameter.

Examples

s=40; k=40; v=0.30; r=0.08; tt=0.25; d=0; nstep=15

binomopt(s, k, v, r, tt, d, nstep, american=TRUE, putopt=TRUE)

binomopt(s, k, v, r, tt, d, nstep, american=TRUE, putopt=TRUE,
returnparams=TRUE)

## matches Fig 10.8 in 3rd edition of Derivatives Markets
x <- binomopt(110, 100, .3, .05, 1, 0.035, 3, american=TRUE,

returntrees=TRUE, returnparams=TRUE)
print(x$oppricretree)
print(x$delta)
print(x$bond)

binomplot(s, k, v, r, tt, d, nstep, american=TRUE, putopt=TRUE)

binomplot(s, k, v, r, tt, d, nstep, american=FALSE, putopt=TRUE)

blksch Black-Scholes option pricing
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Description

bscall and bsput compute Black-Scholes call and put prices. The functions assetcall, assetput,
cashcall, and cashput provide the prices of binary options that pay one share (the asset options)
or $1 (the cash options) if at expiration the asset price exceeds the strike (the calls) or is below the
strike (the puts). We have the identities

bscall(s, k, v, r, tt, d) = assetcall(s, k, v, r, tt, d) - k*cashcall(s, k, v, r, tt, d)

bsput(s, k, v, r, tt, d) = k*cashput(s, k, v, r, tt, d) - assetput(s, k, v, r, tt, d)

Usage

bscall(s, k, v, r, tt, d)
bsput(s, k, v, r, tt, d)
assetcall(s, k, v, r, tt, d)
cashcall(s, k, v, r, tt, d)
assetput(s, k, v, r, tt, d)
cashput(s, k, v, r, tt, d)

Arguments

s Price of the underlying asset

k Strike price

v Volatility of the asset price, defined as the annualized standard deviation of the
continuously-compounded return

r Annual continuously-compounded risk-free interest rate

tt Time to maturity in years

d Dividend yield, annualized, continuously-compounded

Details

Returns a scalar or vector of option prices, depending on the inputs

Value

A Black-Scholes option price. If more than one argument is a vector, the recycling rule determines
the handling of the inputs

Note

It is possible to specify the inputs either in terms of an interest rate and a "dividend yield" or an
interest rate and a "cost of carry". In this package, the dividend yield should be thought of as
the cash dividend received by the owner of the underlying asset, or (equivalently) as the payment
received if the owner were to lend the asset.

There are other option pricing packages available for R, and these may use different conventions
for specifying inputs. In fOptions, the dividend yield is replaced by the generalized cost of carry,
which is the net payment required to fund a position in the underlying asset. If the interest rate
is 10% and the dividend yield is 3%, the generalized cost of carry is 7% (the part of the interest
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payment not funded by the dividend payment). Thus, using the GBS function from fOptions, these
two expressions return the same price:

bscall(s, k, v, r, tt, d)

fOptions::GBSOption('c', S=s, K=k, Time=tt, r=r, b=r-d, sigma=v)

Examples

s=40; k=40; v=0.30; r=0.08; tt=0.25; d=0;
bscall(s, k, v, r, tt, d)

## following returns the same price as previous
assetcall(s, k, v, r, tt, d) - k*cashcall(s, k, v, r, tt, d)

## return option prices for different strikes
bsput(s, k=38:42, v, r, tt, d)

bondsimple Simple Bond Functions

Description

Basic yield, pricing, duration and convexity calculations. These functions perform simple present
value calculations assuming that all periods between payments are the same length. Unlike bond
functions in Excel, for example, settlement and maturity dates are not used. By default, duration is
Macaulay duration.

Usage

bondpv(coupon, mat, yield, principal, freq)
bondyield(price, coupon, mat, principal, freq)
duration(price, coupon, mat, principal, freq, modified)
convexity(price, coupon, mat, principal, freq)

Arguments

coupon annual coupon

mat maturity in years

yield annual yield to maturity. If freq > 1, the yield is freq times the per period yield.

principal maturity payment of the bond, in addition to the final coupon. Default value is
$1,000. If the instrument is an annuity, set principal to zero.

freq number of payments per year.

price price of the bond

modified If true, compute modified duration, otherwise compute Macaulay duration. FALSE
by default.
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Value

Return price, yield, or duration/convexity.

Examples

coupon <- 6; mat <- 20; freq <- 2; principal <- 100; yield <- 0.045;

price <- bondpv(coupon, mat, yield, principal, freq) # 119.7263
bondyield(coupon, mat, price=price, principal, freq) # 0.045
duration(price, coupon, mat, principal, freq, modified=FALSE) # 12.5043
duration(price, coupon, mat, principal, freq, modified=TRUE) # 12.3928
convexity(price, coupon, mat, principal, freq) # 205.3245

compound Compound options

Description

A compound option is an option for which the underlying asset is an option. The underlying op-
tion (the option on which there is an option) in turn has an underlying asset. The definition of a
compound option requires specifying

• whether you have the right to buy or sell an underlying option
• whether the underlying option (the option upon which there is an option) is a put or a call
• the price at which you can buy or sell the underlying option (strike price kco — the strike on

the compound option)
• the price at which you can buy or sell the underlying asset should you exercise the compound

option (strike price kuo — the strike on the underlying option)
• the date at which you have the option to buy or sell the underlying option (first exercise date,
t1)

• the date at which the underlying option expires, t2

Given these possibilities, you can have a call on a call, a put on a call, a call on a put, and a put on
a put. The valuation procedure require knowing, among other things, the underlying asset price at
which it will be worthwhile to acquire the underlying option.

Given the underlying option, there is a parity relationship: If you buy a call on a call and sell a call
on a call, you have acquired the underlying call by paying the present value of the strike, kco.

Usage

binormsdist(x1, x2, rho)
optionsoncall(s, kuo, kco, v, r, t1, t2, d)
optionsonput(s, kuo, kco, v, r, t1, t2, d)
calloncall(s, kuo, kco, v, r, t1, t2, d, returnscritical)
callonput(s, kuo, kco, v, r, t1, t2, d, returnscritical)
putoncall(s, kuo, kco, v, r, t1, t2, d, returnscritical)
putonput(s, kuo, kco, v, r, t1, t2, d, returnscritical)
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Arguments

s Price of the asset on which the underlying option is written

v Volatility of the underlying asset, defined as the annualized standard deviation
of the continuously-compounded return

r Annual continuously-compounded risk-free interest rate

d Dividend yield of the underlying asset, annualized, continuously-compounded

kuo strike on the underlying option

kco strike on compound option (the price at which you would buy or sell the under-
lying option at time t1)

t1 time until exercise for the compound option

t2 time until exercise for the underlying option

x1, x2 values at which the cumulative bivariate normal distribution will be evaluated

rho correlation between x1 and x2

returnscritical

(FALSE) boolean determining whether the function returns just the options price
(the default) or the option price along with the asset price above or below which
the compound option is exercised.

Value

The option price, and optionally, the stock price above or below which the compound option is
exercised. The compound option functions are not vectorized, but the greeks function should work,
apart from theta.

Note

The compound option formulas are not vectorized.

geomasianmc Geometric Asian option prices computed by Monte Carlo

Description

Geometric average Asian option prices

Usage

geomasianmc(s, k, v, r, tt, d, m, numsim, printsds=FALSE)
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Arguments

s Price of underlying asset

k Strike price of the option. In the case of average strike options, k/s is the mul-
tiplier for the average

v Volatility of the underlygin asset price, defined as the annualized standard devi-
ation of the continuously-compounded return

r Annual continuously-compounded risk-free interest rate

tt Time to maturity in years

d Dividend yield, annualized, continuously-compounded

m Number of prices in the average calculation

numsim Number of Monte Carlo iterations

printsds Print standard deviation for the particular Monte Carlo calculation

Value

Array of geometric average option prices, along with vanilla European option prices implied by the
the simulation. Optionally returns Monte Carlo standard deviations. Note that exact solutions for
these prices exist, the purpose is to see how the Monte Carlo prices behave.

See Also

Other Asian: arithasianmc(), arithavgpricecv(), asiangeomavg

Examples

s=40; k=40; v=0.30; r=0.08; tt=0.25; d=0; m=3; numsim=1e04
geomasianmc(s, k, v, r, tt, d, m, numsim, printsds=FALSE)

greeks Calculate option Greeks

Description

The functions greeks and greeks2 provide two different calling conventions for computing a full
set of option Greeks. greeks simply requires entering a pricing function with parameters. greeks2
requires the use of named parameter entries. The function bsopt calls greeks2 to produce a full
set of prices and greeks for calls and puts. These functions are all vectorized, the only restriction
being that the functions will produce an error if the recycling rule can not be used safely (that is, if
parameter vector lengths are not integer multiples of one another).

Usage

greeks(f, complete=FALSE, long=FALSE, initcaps=TRUE)
# must used named list entries:
greeks2(fn, ...)
bsopt(s, k, v, r, tt, d)
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Arguments

s Price of underlying asset

k Option strike price

v Volatility of the underlying asset, defined as the annualized standard deviation
of the continuously-compounded return

r Annual continuously-compounded risk-free interest rate

tt Time to maturity in years

d Dividend yield of the underlying asset, annualized, continuously-compounded

fn Pricing function name, not in quotes

f Fully-specified option pricing function, including inputs which need not be named.
For example, you can enter greeks(bscall(40, 40, .3, .08, .25, 0))

complete FALSE. If TRUE, return a data frame with columns equal to input parameters,
function name, premium, and greeks (each greek is a column). This is experi-
mental and the output may change. Convert to long format using long=TRUE.

long FALSE. Setting long=TRUE returns a long data frame, where each row contains
input parameters, function name, and either the premium or one of the greeks.
long=TRUE implies complete=TRUE

initcaps TRUE. If true, capitalize names (e.g. "Delta" vs "delta")

... Pricing function inputs, must be named, may either be a list or not

Details

Numerical derivatives are calculated using a simple difference. This can create numerical problems
in edge cases. It might be good to use the package numDeriv or some other more sophisticated
calculation, but the current approach works well with vectorization.

Value

A named list of Black-Scholes option prices and Greeks, or optionally (‘complete=TRUE‘) a dataframe.

Note

The pricing function being passed to the greeks function must return a numeric vector. For example,
callperpetual must be called with the option showbarrier=FALSE (the default). The pricing
function call cannot contain a variable named ‘z91k25‘.

Examples

s=40; k=40; v=0.30; r=0.08; tt=0.25; d=0;
greeks(bscall(s, k, v, r, tt, d), complete=FALSE, long=FALSE, initcaps=TRUE)
greeks2(bscall, list(s=s, k=k, v=v, r=r, tt=tt, d=d))
greeks2(bscall, list(s=s, k=k, v=v, r=r, tt=tt, d=d))[c('Delta', 'Gamma'), ]
bsopt(s, k, v, r, tt, d)
bsopt(s, c(35, 40, 45), v, r, tt, d)
bsopt(s, c(35, 40, 45), v, r, tt, d)[['Call']][c('Delta', 'Gamma'), ]
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## plot Greeks for calls and puts for 500 different stock prices
##
## This plot can generate a "figure margins too large" error
## in Rstudio
k <- 100; v <- 0.30; r <- 0.08; tt <- 2; d <- 0
S <- seq(.5, 250, by=.5)
Call <- greeks(bscall(S, k, v, r, tt, d))
Put <- greeks(bsput(S, k, v, r, tt, d))
y <- list(Call=Call, Put=Put)
par(mfrow=c(4, 4), mar=c(2, 2, 2, 2)) ## create a 4x4 plot
for (i in names(y)) {

for (j in rownames(y[[i]])) { ## loop over greeks
plot(S, y[[i]][j, ], main=paste(i, j), ylab=j, type='l')

}
}
## Not run:
## Using complete option for calls
call_long <- greeks(bscall(S, k, v, r, tt, d), long=TRUE)
ggplot2::ggplot(call_long, aes(x=s, y=value)) +

geom_line() + facet_wrap(~greek, scales='free')

## End(Not run)

implied Black-Scholes implied volatility and price

Description

bscallimpvol and bsputimpvol compute Black-Scholes implied volatilties. The functions bscallimps
and bsputimps, compute stock prices implied by a given option price, volatility and option charac-
teristics.

Usage

bscallimpvol(s, k, r, tt, d, price, lowvol, highvol,
.tol=.Machine$double.eps^0.5)
bsputimpvol(s, k, r, tt, d, price, lowvol, highvol,
.tol=.Machine$double.eps^0.5)
bscallimps(s, k, v, r, tt, d, price, lower=0.0001, upper=1e06,
.tol=.Machine$double.eps^0.5)
bsputimps(s, k, v, r, tt, d, price, lower=0.0001, upper=1e06,
.tol=.Machine$double.eps^0.5)

Arguments

s Stock price

k Strike price of the option

r Annual continuously-compounded risk-free interest rate
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tt Time to maturity in years

d Dividend yield, annualized, continuously-compounded

price Option price when computing an implied value

lowvol minimum implied volatility

highvol maximum implied volatility

.tol numerical tolerance for zero-finding function ‘uniroot‘

v Volatility of the stock, defined as the annualized standard deviation of the continuously-
compounded return

lower minimum stock price in implied price calculation

upper maximum stock price in implied price calculation

Details

Returns a scalar or vector of option prices, depending on the inputs

Value

Implied volatility (for the "impvol" functions) or implied stock price (for the "impS") functions.

Note

Implied volatilties and stock prices do not exist if the price of the option exceeds no-arbitrage
bounds. For example, if the interest rate is non-negative, a 40 strike put cannot have a price exceed-
ing $40.

Examples

s=40; k=40; v=0.30; r=0.08; tt=0.25; d=0;
bscallimpvol(s, k, r, tt, d, 4)
bsputimpvol(s, k, r, tt, d, 4)
bscallimps(s, k, v, r, tt, d, 4, )
bsputimps(s, k, v, r, tt, d, 4)

jumps Option pricing with jumps

Description

The functions cashjump, assetjump, and mertonjump return call and put prices, as vectors named
"Call" and "Put", or "Call1", "Call2", etc. in case inputs are vectors. The pricing model is the
Merton jump model, in which jumps are lognormally distributed.
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Usage

assetjump(s, k, v, r, tt, d, lambda, alphaj, vj, complete)
cashjump(s, k, v, r, tt, d, lambda, alphaj, vj, complete)
mertonjump(s, k, v, r, tt, d, lambda, alphaj, vj, complete)

Arguments

s Stock price

k Strike price of the option

v Volatility of the stock, defined as the annualized standard deviation of the continuously-
compounded return

r Annual continuously-compounded risk-free interest rate

tt Time to maturity in years

d Dividend yield, annualized, continuously-compounded

lambda Poisson intensity: expected number of jumps per year

alphaj Mean change in log price conditional on a jump

vj Standard deviation of change in log price conditional on a jump

complete Return inputs along with prices, all in a data frame

Details

Returns a scalar or vector of option prices, depending on the inputs

Value

A vector of call and put prices computed using the Merton lognormal jump formula.

See Also

McDonald, Robert L., Derivatives Markets, 3rd Edition (2013) Chapter 24

bscall bsput

Examples

s <- 40; k <- 40; v <- 0.30; r <- 0.08; tt <- 2; d <- 0;
lambda <- 0.75; alphaj <- -0.05; vj <- .35;
bscall(s, k, v, r, tt, d)
bsput(s, k, v, r, tt, d)
mertonjump(s, k, v, r, tt, d, 0, 0, 0)
mertonjump(s, k, v, r, tt, d, lambda, alphaj, vj)

## following returns the same price as previous
c(1, -1)*(assetjump(s, k, v, r, tt, d, lambda, alphaj, vj) -
k*cashjump(s, k, v, r, tt, d, lambda, alphaj, vj))

## return call prices for different strikes
kseq <- 35:45
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cp <- mertonjump(s, kseq, v, r, tt, d, lambda, alphaj,
vj)$Call

## Implied volatilities: Compute Black-Scholes implied volatilities
## for options priced using the Merton jump model
vimp <- sapply(1:length(kseq), function(i) bscallimpvol(s, kseq[i],

r, tt, d, cp[i]))
plot(kseq, vimp, main='Implied volatilities', xlab='Strike',

ylab='Implied volatility', ylim=c(0.30, 0.50))

perpetual Perpetual American options

Description

callperpetual and putperpetual compute prices of perpetual American options. The functions
optionally return the exercise barriers (the prices at which the options are optimally exercised).

Usage

callperpetual(s, k, v, r, d, showbarrier)
putperpetual(s, k, v, r, d, showbarrier)

Arguments

s Price of the underlying asset

k Strike price

v Volatility of the asset price, defined as the annualized standard deviation of the
continuously-compounded return

r Annual continuously-compounded risk-free interest rate

d Dividend yield, annualized, continuously-compounded

showbarrier Boolean (FALSE). If TRUE, the option price and exercise barrier are returned
as a list

Details

Returns a scalar or vector of option prices, depending on the inputs

callperpetual(s, k, v, r, tt, d)

Value

Option price, and optionally the optimal exercise barrier.
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Note

If the dividend yield is zero, a perpetual call is never exercised. The pricing function in this case
will return the stock price, which is the limiting option price as the dividend yield goes to zero.
Similarly, if the risk-free rate is zero, a perpetual put is never exercised. The pricing function will
return the strike price in this case, which is the limiting value of the pricing function as the interest
rate approaches zero.

Examples

s=40; k=40; v=0.30; r=0.08; d=0.02;
callperpetual(s, k, v, r, d)

putperpetual(s, c(35, 40, 45), v, r, d, showbarrier=TRUE)

quincunx Quincunx simulation

Description

quincunx simulates balls dropping down a pegboard with a 50% chance of bouncing right or left
at each level. The balls accumulate in bins. If enough balls are dropped, the distribution ap-
proaches normality. This device is called a quincunx. See https://www.mathsisfun.com/data/
quincunx.html

Usage

quincunx(n = 3, numballs = 20, delay = 0.1, probright = 0.5, plottrue = TRUE)

Arguments

n Integer The number of peg levels, default is 3

numballs Integer The number of balls dropped, default is 20

delay Numeric Number of seconds between ball drops. Set delay > 0 to see animation
with delay seconds between dropped balls. If delay < 0, the simulation will
run to completion without delays. If delay == 0, the user must hit <return> for
the next ball to drop. The default is 0.1 second and can be set with the delay
parameter.

probright Numeric The probability the ball bounces to the right; default is 0.5

plottrue Boolean If TRUE, the display will indicate bin levels if the distribution were
normal. Default is TRUE

https://www.mathsisfun.com/data/quincunx.html
https://www.mathsisfun.com/data/quincunx.html
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Examples

## These examples will not display correctly within RStudio unless
## the plot window is large
quincunx(delay=0)
quincunx(n=10, numballs=200, delay=0)
quincunx(n=20, numballs=200, delay=0, probright=0.7)

simprice Simulate asset prices

Description

simprice computes simulated lognormal price paths, with or without jumps. Saves and restores
random number seed.

simprice(s0 = 100, v = 0.3, r = .08, tt = 1, d = 0, trials = 2, periods = 3, jump = FALSE, lambda
= 0, alphaj = 0, vj = 0, seed = NULL, long = TRUE, scalar_v_is_stddev = TRUE)

Usage

simprice(s0, v, r, tt, d, trials, periods, jump, lambda,
alphaj, vj, seed, long, scalar_v_is_stddev)

Arguments

s0 Initial price of the underlying asset
v If scalar, default is volatility of the asset price, defined as the annualized standard

deviation of the continuously-compounded return. The parameter scalar_v_is_stddev
controls this behavior. If v is a square n x n matrix, it is assumed to be the co-
variance matrix and simprice will return n simulated price series.

r Annual continuously-compounded risk-free interest rate
tt Time to maturity in years
d Dividend yield, annualized, continuously-compounded
trials number of simulated price paths
periods number of equal-length periods in each simulated path
jump boolean controlling use of jump parameters
lambda expected number of jumps in one year (lambda*tt) is the Poisson parameter
alphaj Expected continuously compounded jump percentage
vj lognormal volatility of the jump amount
seed random number seed
long if TRUE, return a long-form dataframe with columns indicating the price, trial,

and period. If FALSE, the returned data is wide, containing only prices: each row
is a trial and each column is a period

scalar_v_is_stddev

if TRUE, scalar v is interpreted as the standard devaition; if FALSE, it is variance.
Non-scalar V is always interpreted as a covariance matrix
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Value

A dataframe with trials simulated stock price paths

Examples

# simple Monte Carlo option price example. Since there are two
# periods we can compute options prices for \code{tt} and
# \code{tt/2}
s0=40; k=40; v=0.30; r=0.08; tt=0.25; d=0;
st = simprice(s0, k, v, r, tt, d, trials=3, periods=2, jump=FALSE)
callprice1 = exp(-r*tt/2)*mean(pmax(st[st$period==1,] - k, 0))
callprice2 = exp(-r*tt)*mean(pmax(st[st$period==2,] - k, 0))
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